Regulation of endogenous reactive oxygen species in platelets can reverse aggregation.

نویسندگان

  • Patricia Clutton
  • Anne Miermont
  • Jane E Freedman
چکیده

OBJECTIVE While much is known about the normal activation of platelets, there have been few observations demonstrating reversibility of the aggregation process. Inhibition of phosphoinositide 3-kinase (PI3-kinase) has been shown to cause platelet disaggregation. In addition, NO is a known potent inhibitor of platelet function. In this study, the role of PI3-kinase in the regulation of endogenous platelet NO and the relevance to platelet function was determined. METHODS AND RESULTS Incubation of platelets with PI3-kinase inhibitors led to a dose-dependent increase in platelet NO and cGMP levels that were temporally related to the period of platelet disaggregation. Addition of ferroheme myoglobin eliminated both the augmented NO release and disaggregation. PI3-kinase inhibition decreased the functional activation of NADPH oxidase and this corresponded to decreased superoxide release. To confirm these findings, platelets from NOS III-deficient mice were studied. These platelets did not release NO, and PI3-kinase inhibition led to decreased superoxide but not platelet disaggregation. CONCLUSIONS Overall, these results indicate that platelet-derived NO contributes to the process of platelet disaggregation. PI3-kinase plays a role in regulating NADPH oxidase-generated superoxide in platelets and, by altering the bioactivity of platelet NO, may be a potential method for reversing platelet aggregation and thrombus formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

Lipoxin A₄ inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression.

Porphyromonas gingivalis is an etiological agent that is strongly associated with periodontal disease, and it correlates with numerous inflammatory disorders, such as cardiovascular disease. Circulating bacteria may contribute to atherogenesis by promoting CD11b/CD18-mediated interactions between neutrophils and platelets, causing reactive oxygen species (ROS) production and aggregation. Lipoxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2004